Please wait a minute...
European Journal of Gynaecological Oncology  2020, Vol. 41 Issue (3): 396-401    DOI: 10.31083/j.ejgo.2020.03.5283
Original Research Previous articles | Next articles
Epidemiologic profile of benign versus oncologic gynecology populations: similar procedures, different patients
Lindsey Buckingham1(), Lori Cory1, Colleen Brensinger1, Xiaochen Zhang2, Robert A. Burger1, Fiona Simpkins1, Emily M. Ko1
1Division of Gynecologic Oncology, University of Pennsylvania Health System. Philadelphia, PA 19107, USA
2Institute for Population Research, The Ohio State University. Columbus, OH 19107, USA
Download:  PDF(210KB)  ( 247 ) Full text   ( 6 )
Export:  BibTeX | EndNote (RIS)      
Abstract  

Objective: We sought to compare preoperative comorbidities in patients undergoing benign versus oncologic gynecologic surgeries. Methods: All cases of benign and malignant gynecologic surgeries in the National Surgery Quality Improvement Program (NSQIP) database between 2006-2012 were identified. Gynecologic cancers were grouped by site: uterus, ovary, cervix, and “other” including labia, vulva, vagina, pelvis, and retroperitoneum. Preoperative comorbidities were captured. Descriptive analyses were performed. 94,935 patients underwent gynecologic surgeries: 87.8% benign and 12.2% oncologic. The prevalence of cardiovascular disease, pulmonary disease, and neurologic disease differed between benign and oncologic groups (p < 0.001). In uterine, ovarian and other cancers, greater than 40% of patients had one or more comorbidities and > 5% had 2 or more, (p < 0.001). Gynecologic oncology patients were significantly older, had higher BMI, greater proportion black, and had more comorbidities than patients undergoing benign gynecologic surgery. Comorbidity profiles also differed significantly by type of gynecologic cancer. Preoperative and postoperative optimization, risk assessments, and appropriate reimbursement coverage should account for these baseline differences.

Key words:  Comorbidity profile      Gynecologic cancer      Reimbursement     
Submitted:  13 June 2019      Accepted:  29 August 2019      Published:  15 June 2020     
Fund: 124268-IRG-78-002-35-IRG/American Cancer Society;George and Emily McMichael Harrison Fund, Penn Presbyterian Harrison Fund of the University of Pennsylvania Hospital;Obstetrics and Gynecology Department
*Corresponding Author(s):  Lindsey Buckingham     E-mail:  linds.k.b@gmail.com

Cite this article: 

Lindsey Buckingham, Lori Cory, Colleen Brensinger, Xiaochen Zhang, Robert A. Burger, Fiona Simpkins, Emily M. Ko. Epidemiologic profile of benign versus oncologic gynecology populations: similar procedures, different patients. European Journal of Gynaecological Oncology, 2020, 41(3): 396-401.

URL: 

https://ejgo.imrpress.com/EN/10.31083/j.ejgo.2020.03.5283     OR     https://ejgo.imrpress.com/EN/Y2020/V41/I3/396

Table 1  - Demographics, benign versus malignant cohorts.
Benign(n = 83374) Malignant(n = 11561) p-Value
Age (y)* 46 [39-54] 61 [53-70] < 0.001
Race < 0.001
White 56571 (70.3) 8870 (78.3)
Black 10055 (12.5) 856 (7.6)
Asian 2222 (2.8) 355 (3.1)
American Indian or Alaska Native 616 (0.8) 27 (0.2)
Native Hawaiian or Pacific Islander 251 (0.3) 20 (0.2)
Unknown 10745 (13.4) 814 (7.8)
Ethnicity Hispanic 9602 (13.3) 814 (7.8) < 0.001
BMI (kg/m2)* 27.8 [24-32.8] 29.7 [24.6-36.6] < 0.001
Smoker 14779 [17.7] 1449 [12.5] < 0.001
ASA Class < 0.001
1 13936 (16.7) 388 (3.4)
2 55136 (66.2) 5480 (47.4)
3 13733 (16.5) 5317 (46)
4 478 (0.6) 363 (3.1)
5 9 (0.0) 3 (0.0)
Missing data 51 (0.1) 10 (0.1)
Functional Status Pre-Surgery < 0.001
Independent 82824 (99.3) 11267 (2.1)
Partially Dependent 360 (0.4) 239 (2.1)
Totally Dependent 39 (0.0) 41 (0.4)
Unknown 151 (0.2) 14 (0.1)
Surgical Procedure < 0.001
TAH 16658 (20.0) 38.52 (33.3)
TLH 9004 (10.8) 2176 (18.8)
VH 11177 (13.4) 181 (1.6)
LASH 6369 (7.6) 89 (0.80)
LAVH 9279 (11.1) 1016 (8.8)
Radical Hysterectomy 139 (0.2) 2151 (18.6)
Lymphadenectomy 20 (0.0) 210 (1.8)
Other 29646 (35.6) 1735 (15.0)
Table 2  - Demographics by disease site.
Uterine
(n = 7047)
Ovary
(n = 2971)
Cervical
(n = 1032)
Other
(n = 511)
p-Value
Age (y)* 63 [56-70] 61 [52-69] 46 [38-57] 66 [56-78] < 0.001
Race < 0.001
White 5474 (79) 2287 (78.7) 709 (70.9) 400 (80.6)
Black 547 (7.9) 182 (6.3) 94 (9.4) 33 (6.7)
Asian 211 (3.0) 79 (2.7) 59 (5.9) 6 (1.2)
American Indian or Alaska Native 11 (0.2) 11 (0.4) 5 (0.5) 0 (0.0)
Native Hawaiian or Pacific Islander 12 (0.2) 5 (0.2) 3 (0.3) 0 (0.0)
Unknown 674 (9.7) 343 (11.8) 130 (13) 57 (11.5)
Ethnicity Hispanic 453 (7.0) 202 (7.6) 136 (14.8) 23 (5.1) < 0.001
BMI (kg/m2)* 32 [26.3-39.2] 26.6 [23-31.9] 26.6 [22.6-31.9] 27.9 [23.8-33.1] < 0.001
Smoker 664 (9.4) 392 (13.2) 278 (26.9) 115 (22.5) < 0.001
ASA Class < 0.001
1 190 (2.7) 92 (3.1) 97 (9.4) 9 (1.8)
2 3345 (47.5) 1304 (43.9) 614 (59.5) 217 (42.5)
3 3282 (46.6) 164 (49.3) 308 (29.8) 263 (51.5)
4 224 (3.2) 107 (3.6) 12 (1.2) 20 (3.9)
5 1 (0.0) 2 (0.1) 1 (0.1) 2 (0.4)
Missing data 5 (0.1) 2 (0.1) 1 (0.1) 2 (0.4)
Functional Status Pre-Surgery 0.047
Independent 6873 (97.5) 2885 (97.1) 1017 (98.5) 492 (96.3)
Partially Dependent 141 (2) 71 (2.4) 10 (1) 17 (3.3)
Totally Dependent 22 (0.3) 14 (0.5) 3 (0.3) 2 (0.4)
Unknown 11 (0.2) 1 (0) 2 (0.2) 0 (0)
Surgical Procedure < 0.001
TAH 2109 (29.9) 1506 (50.7) 182 (17.6) 55 (10.8)
TLH 1982 (28.1) 92 (3.1) 99 (9.6) 3 (0.6)
VH 139 (2.0) 2 (0.1) 39 (3.8) 1 (0.2)
LASH 65 (0.9) 19 (0.6) 5 (0.5) 0 (0)
LAVH 910 (12.9) 41 (1.4) 64 (6.2) 1 (0.2)
Radical Hysterectomy 1488 (21.1) 154 (5.2) 505 (48.9) 4 (0.8)
Lymphadenectomy 93 (1.3) 44 (1.5) 49 (4.7) 24 (4.7)
Other 238 (3.4) 993 (33.4) 83 (8.0) 421 (82.4)
Table 3  - Comorbidity profiles by diagnosis.
Benign (n = 83374) Malignant (n = 11561) p-Value Uterine (n = 7047) Ovary (n = 2971) Cervical (n = 1032) Other (511) p-Value
Comorbidities
Congestive Heart Failure 31 (0.0) 41 (0.4) < 0.001 25 (0.4) 11 (0.4) 0 (0.0) 5 (1.0) 0.025
Diabetes mellitus 5641 (6.8) 1882 (16.3) < 0.001 1431 (20.3) 302 (10.2) 70 (6.8) 79 (15.5) < 0.001
Dyspnea 3031 (3.6) 926 (8.0) < 0.001 555 (7.9) 295 (9.9) 34 (3.3) 42 (8.2) < 0.001
Severe COPD 969 (1.2) 322 (2.8) < 0.001 196 (2.8) 74 (2.5) 21 (2.0) 31 (6.1) < 0.001
Hypertension 21832 (26.2) 5727 (49.5) < .001 3947 (56.0) 1232 (41.5) 260 (25.2) 288 (56.4) < 0.001
Steroid use 876 (1.1) 211 (1.8) < 0.001 89 (1.3) 92 (3.1) 15 (1.5) 15 (2.9) < 0.001
Comorbid Groups
Cardiovascular disease 949 (1.1) 288 (2.5) < 0.001 179 (2.5) 74 (2.5) 8 (0.8) 27 (5.3) < 0.001
Pulmonary disease 3676 (4.4) 1106 (9.6) < 0.001 659 (9.4) 340 (11.4) 46 (4.5) 61 (11.9) < 0.001
Neurologic disease 984 (1.2) 247 (2.1) < 0.001 149 (2.1) 62 (2.1) 10 (1.0) 26 (5.1) < 0.001
Comorbidity Score < 0.001 < 0.001
0 60285 (72.3) 5567 (48.2) 2961 (42.0) 1650 (55.5) 753 (73.0) 203 (39.7)
1 21240 (25.5) 5247 (45.4) 3583 (50.8) 1152 (38.8) 245 (23.7) 267 (52.3)
2 1737 (2.1) 682 (5.9) 454 (6.4) 162 (5.5) 31 (3.0) 35 (6.8)
3 102 (0.1) 60 (0.5) 46 (0.7) 6 (0.2) 3 (0.3) 5 (1.0)
4 9 (0.0) 5 (0.0) 3 (0.0) 1 (0.0) 0 (0.0) 1 (0.2)
5 1 (0.0) 0 (0.0)
Figure 1.  Summed number of raw comorbidities.

[1] US department of health and human services. Strategic Plan Fiscal Years 2010 - 2015.2010. Accessed December 15, 2018.
[2] Cohn D.E., Leitao M., Levenback C., Berkowitz R., Roman L., et al.: “Reporting of quality measures in gynecologic oncology programs at Prospective Payment System (PPS)-Exempt Cancer Hospitals: an early glimpse into a challenging initiative”. Gynecol. Oncol., 2013, 130, 403.
doi: 10.1016/j.ygyno.2013.05.026
[3] Iyer R., Gentry Maharaj A., Nordin A., Burnell M., Liston R., Manchanda R., et al.: “Predictors of complications in gynaecological oncological surgery: a prospective multicentre study (UKGOSOC-UK gynaecological oncology surgical outcomes and complications)”. Br. J. Cancer., 2014, 112, 475.
doi: 10.1038/bjc.2014.630 pmid: 25535730
[4] Mahdi H., Jernigan A.M., Aljebori Q., Lockhart D., Moslemi Kebria M.: “The impact of obesity on the 30-day morbidity and mortality after surgery for endometrial cancer”. J. Miniz. Invasive. Gynecol., 2014, 22, 94.
[5] Suidan R S., Leita M.M., Jr ., Zivanovi O., Gardner G.J., Long Roche K.C., Sonoda Y., et al.: “Predictive value of the Age-Adjusted Charlson Comorbidity Index on perioperative complications and survival in patients undergoing primary debulking surgery for advanced epithelial ovarian cancer”. Gynecol. Oncol., 2015, 138, 246.
doi: 10.1016/j.ygyno.2015.05.034 pmid: 26037900
[6] Piccirillo J.F., Tierney R.M., Costas I., Grove L., Spitznagel E.L.: “Prognostic importance of comorbidity in a hospital-based cancer registry”. JAMA., 2004, 291, 2441.
doi: 10.1001/jama.291.20.2441 pmid: 15161894
[7] Szender J.B., Frederick P.J., Eng K.H., Akers S.N., Lele S.B., Odunsi K.: “Evaluation of the National Surgical Quality Improvement Program Universal Surgical Risk Calculator for a gynecologic oncology service”. Int. J. Gynecol. Cancer., 2015, 25, 512.
doi: 10.1097/IGC.0000000000000378 pmid: 25628106
[8] Teoh D., Halloway R.N., Heim J., Vogel R.I., Rivard C.: “Evaluation of the American College of Surgeons National Surgical Quality Improvement Program Surgical Risk Calculator in Gynecologic Oncology Patients Undergoing Minimally Invasive Surgery” . J. Minim. Invasive .Gynecol., 2016, 24, 48.
doi: 10.1016/j.jmig.2016.10.005 pmid: 27789387
[9] Rivard C., Nahum R., Slagle E., Duininck M., Isaksson Vogel R., Teoh D.: “Evaluation of the performance of the ACS NSQIP surgical risk calculator in gynecologic oncology patients undergoing laparotomy”. Gynecol. Oncol., 2016, 141, 281.
pmid: 26899020
[10] Cory L., Latif N., Brensinger C., Zhang X., Giuntoli R.L., Burger R.A., et al.: “Readmission After Gynecologic Surgery: A Comparison of Procedures for Benign and Malignant Indications”. Obstet. Gynecol., 2017, 130, 285.
doi: 10.1097/AOG.0000000000002141 pmid: 28697106
[11] Dessources K., Hou J.Y., Tergas A.I., Burke W.M., Ananth C.V., Prendergast E., et al.: “Factors associated with 30-day hospital readmission after hysterectomy”. Obstet. Gynecol., 2015, 125, 461.
doi: 10.1097/AOG.0000000000000623 pmid: 25569007
[12] Bilimoria K Y., Liu Y., Paruch J.L., Zhou L., Kmiecik T.E., Ko C.Y., et al.: “Development and evaluation of the universal ACS NSQIP surgical risk calculator: a decision aid and informed consent tool for patients and surgeons”. J. Am. Coll. Surg., 2013, 217, 833.
doi: 10.1016/j.jamcollsurg.2013.07.385 pmid: 24055383
[13] Edwards B K., Noone A.M., Mariotto A.B., Simard E.P., Boscoe F.P., Henley S.J., et al.: “Annual Report to the Nation on the status of cancer, 1975-2010, featuring prevalence of comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancer”. Cancer., 2014, 120, 1290.
doi: 10.1002/cncr.28509 pmid: 24343171
[14] Cho H., Mariotto A.B., Mann B.S., Klabunde C.N., Feuer E.J.: “Assessing non-cancer-related health status of US cancer patients: other-cause survival and comorbidity prevalence”. Am. J. Epidemiol., 2013, 178, 339.
doi: 10.1093/aje/kws580 pmid: 23825168
[15] Aletti G.D., Santillan A., Eisenhauer E.L., Hu J., Aletti G., Podratz K.C., et al.: “A new frontier for quality of care in gynecologic oncology surgery: multi-institutional assessment of short-term outcomes for ovarian cancer using a risk-adjusted model”. Gynecol. Oncol., 2007, 107, 99.
doi: 10.1016/j.ygyno.2007.05.032 pmid: 17602726
[16] Elshaikh M., Vance S., Kamal M., Burmeister C., Hanna R.K., Rasool N., et al.: “Influence of comorbidity on the risk of death: a single institution study of 1132 women with early-stage uterine cancer”. Am. J. Clin. Oncol., 2014.
doi: 10.1097/COC.0000000000000717 pmid: 32467526
[17] Barber E.L., Rutstein S., Miller W.C., Gehrig P.A.: “A preoperative personalized risk assessment calculator for elderly ovarian cancer patients undergoing primary cytoreductive surgery”. Gynecol. Oncol., 2015, 139, 401.
pmid: 26432038
[18] Kohut A., Orfanelli T., Poggio J.L., Gibbon D., Buckley De Meritens A., Richard S., et al.: “Morbidity and mortality risk assessment in gynecologic oncology surgery using the american college of surgeons national surgical quality improvement program database”. Int. J. Gynecol. Cancer., 2018, 28, 840.
doi: 10.1097/IGC.0000000000001234 pmid: 29664848
[19] Mansmann U., Rieger A., Strahwald B., Crispin A.: “Risk calculators-methods, development, implementation, and validation”. Int. J. Colorectal. Dis., 2016, 31, 1111.
doi: 10.1007/s00384-016-2589-3 pmid: 27108006
[20] Cohn D.E., Ko E., Meyer L.A., Wright J.D., Temkin S.M., Foote J., et al.: “The "value" of value in gynecologic oncology practice in the United States: Society of Gynecologic Oncology evidence-based review and recommendations”. Gynecol. Oncol., 2017, 145, 185.
doi: 10.1016/j.ygyno.2017.02.024 pmid: 28258763
[1] Rie Nakamura, Yuko Shimoji, Tadaharu Nakasone, Yusuke Taira, Yoshihisa Arakaki, Tomoko Nakamoto, Keiko Mekaru, Wataru Kudaka, Tatsuya Kinjo, Yoichi Aoki. Malignant bowel obstruction in recurrent gynecologic cancers: who will benefit from palliative surgical intervention?[J]. European Journal of Gynaecological Oncology, 2020, 41(4): 513-516.
[2] T. Tantitamit, K.-G. Huang, A. Temtanakitpaisan. Emerging role of sentinel lymph node mapping for gynecologic oncology in the new era[J]. European Journal of Gynaecological Oncology, 2019, 40(6): 905-914.
[3] I. Laskov, D. Grisaru, V. Deutsch, N. Fargo, Y. Raz, N. Mishaan. Evaluation of the hypercoagulable state of gynecologic cancer patients by thromboelastography: a prospective pilot study and a review of the literature[J]. European Journal of Gynaecological Oncology, 2019, 40(6): 988-993.
[4] P. Pimsi, W. Santimaleeworagun, S. Therasakvichya, N. Saengsukkasemsak, A. Laocharoenkeat. The incidence and risk factors of severe neutropenia and febrile neutropenia due to chemotherapy among gynecologic cancer patients in Thailand[J]. European Journal of Gynaecological Oncology, 2018, 39(2): 242-246.
[5] Chunyu Xu, Chun Fang, Zhiguo Zhang, Jinwei Miao. Effects of community intervention on quality of life in women with gynecological cancers[J]. European Journal of Gynaecological Oncology, 2017, 38(6): 948-950.
[6] P.L. Tang, W.C. Huang, W.S. Liu, K.C. Chang. Analysis of gynecologic cancer patients visiting emergency department: a population-based cohort study in Taiwan[J]. European Journal of Gynaecological Oncology, 2017, 38(4): 522-528.
[7] J.W. Park, M. Kim. Replicating viruses for gynecologic cancer therapy[J]. European Journal of Gynaecological Oncology, 2016, 37(3): 295-304.
No Suggested Reading articles found!